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ABSTRACT . New combinatorial statistics on colored permutation
groups are introduced here .  We present two different generaliza -
tions of major index and descent number ;, one of them is com -
binatorial in nature and the other is algebraic .  We also present
Euler - Mahonian type j oint distributions of our parameters .
1. INTRODUCTION
One of the most  active branches  in Enumerative
Combinatorics 1is
the study of permutation statistics . Let S, be the symmetric group on
n letters and let fi: S, — Z,,(1 <i<t)be ( non - negative , integer
valued ) combinatorial parameters . Then one i s interested in the
refined enumeration of permutations according to these parameters :
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where ¢i are variables . Some of the most important parameters are the
following : A descent in a permutation 7 = 7y,..,m, 1 S a position i
such that n(i+1) < (i), an tnversion is a pair i < j such that =(i) > 7(j),
and the major index of = isthe sum of it s descents.  The last parameter
was introduced by MacMahon in [9]and [10].  He called it the
greater

index” .  He proved algebraically that the major index and the inversion
number are equi - distributed over the symmetric group .  In other words

quv(w) _ quaj(vr) = [n],,

TesS, mwes,

where [n], = % ( In fact , MacMahon proved the same result for the

more general case where S, is replaced by the set of all rearrangements
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of a given word - see [11]. The first combinatorial proof of this result
was given by Foata [ 5] ) .

A permutation statistic that i s equi - distributed with the number of
descents is called Fulerian , while a permutation statistic that is equi -
distributed with the inversion number is called Mahonian.

A natural extension ofthe study of permutation statistics
is  the study of pairs  of permutation statistics  and their j oint
distributions . Of particular  interest  is the j oint  distribution of
the descent number and the major index .  The generating function
for this j oint distribution is given by Carlitz * s q - Eulerian polynomial

n

An(tq) = Y ttesmgmaim) = TT(1—tq") > [k +1]7¢".
eSS, i=0 k>0
(Seel4], [7]).

The following problem was first suggested by Foata :

Problem 1. 1. ( Foata ) , Extend the Euler - Mahonian distribution
of de - s cent number and major index t o the hyperoctahedral group B,.

A so lut ion of this problem was given by Adin , Brenti and Roichman |
1 | meanwhile generalizing the concept of major index in two different ways
, one of them algebraic in nature (fmaj) and the other combina - torial
in nature (nmaj). Let Gym = Z.1S, be the group of colored
permutations ( see Section 2 . 2 below ) . In this paper we further
extend the major index to G, in two different ways :

e The parameter Imaj 1is equi- distributed with the length function
of G,,.. We prove the following ( See Theorem 5. 2 ) :

Theorem .
Z qlmaj(Tr) _ Z qé(ﬂ)
m€Gy, meGr,
where ¢ 1S the length function with respect to the s tandard

generators of G, (s ee Section 2. 2 below ) .
We define also the parameter Ides which i s a length - oriented gener -

alization of the descent number . The parameters Ides and Imaj have
Euler - Mahonian type j o int distribution . ~ We prove ( see Theorem 5
. 3):

Theorem .

Z qlmaj(fr)tldes(ﬂ)

Ted
' r,n =Nk 4+ 117t
n[1(1 — tq")Tnk=1 (1 + g*t[r — 1q) ;)[ .

t=20
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e The second direction is to generalize the negative descent number
, ndes, and the negative major index ,nmaj, defined for B, in [ 1] .
The pair  (ndes,nmaj) has a s impler Euler - Mahonian type j o int
distribu - tion.  We prove (s ee Theorem 6 . 8 ) :
Theorem .

nmaj(w)tndes(ﬂ) — (trv qr)n+1 k41 ntk
> q ]t > e+
€xGrn k>0

The notation (¢";q¢"), +1 will be explained in Section 2 . 1 .

The rest of this paper is organized as follows : In the next section
we present some needed notations to be used in the s equel , including
the colored permutation groups . In Section 3 we present some basic
statis - tics on them .  In Section 4 we present a formula for the length
function of G,, (seealso [13]). In Section 5 we introduce
the parameters Ides and Imaj and find their j oint distributions . The
parameters nmaj and ndes will be presented in Section 6 along with their
j o int distribution . It should be noted that , unlike Imaj,nmaj is not
equi - distributed with the standard length function .

2.  PRELIMINARIES
2. 1. Notations . Let N := {0,1,2,3,..} and let Z
be the ring of integers ,Q be the field of rational numbers and C
the field of complex numbers .
For aeNlet [a] := {1,2,..,a} (where [0] :=2). The
cardinality
of a set A will be denoted by | A|. More generally , given a multiset

r

M = {11,292, ...,r%}, denote by | M | it s cardinality , so | M |= 3" a;.

1=1

Given a variable ¢ and a commutative r ing R, denote by Rlq] (re -
spectively , R[g]]) the r ing of polynomials  ( respectively ,  formal
power series ) in ¢ with coefficients in R.

Define :
1 ifn=0;
(a;q)n =

(1—a)(1 —aq)---(1—ag™ ') otherwise.

Also |, let :
[nlg = 11__q; =ldq+--+q""
[0]g = 0)and (so
gt = 2SO (= 1), 1),
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Let n be a non-negative integer. A  partition of
n is an infinite
sequence of non - negative integers with finitely many non - zero t erms

(0.]
and ) "\ =n. A= (A1, Ao, ...), whered; > Ay >
i=1

The sum > \; =nis called the size of ), denoted |\ |; write also A
n. The number of parts of A,¢(\), is the maximal j for which A; > 0.
The unique partition of n = 0 1is the empty partition @ =
(0,0, ...), which has length ¢(2) :=
For any partition X with at most n positive parts let

m;\) =] {1<i<n | XN=j} | (forallj>0),

and let  (%,(y) denote the multinomial co efficient (7 \) ,.1n),..)-

2.2. The Group of Colored Permutations .

Definition 2 . 1 . Let r and = be positive integers . The group
of colored permutations of n digits with » colors i s the wreath
product G,, =

7,18, = Z" % S, consisting of all the pairs (z,7) where zis an n— tuple
of integers between 0 and r— 1 and 7 € S,. The mul-
tiplication i s defined by the fo llowing rule : For z = (z,...,2,) and

2= (2], 2))

(Z, T) . (z/77—/) = ((21 + — (1) n + —;12"@7 o 7—/)

( here + is taken mod 7).
Here are some conventions we use along this paper :

For an element « = (2,7) € G,, with 2z = (21,..,2,)
we  write z;(m)=2. For w=(z71), we write | |=(0,7),(0€ Z").

A much more natural Way to present G,.,, is the fo llowing : Consider
the alphabet ¥ ={1,.. (A, =t as the s et [n]
colored by the Colors O T — 1. Then an element of G,n 18 a co lored
permutation , 1. e. , abijection # : ¥ — ¥ such that
(") = -my. In this manner we write ,  for example ,  the colored

1 2

permutation  (z,7) =((1,0,3,2),(2,1,4,3)) € G34 as ( 5 1

N[N
Lol
N~
@]
]

even j ust as : ?14513
The group G,, 1is generated by the set
= {50,851, 8n-1}
deﬁned by their action on the set [n] as follows :
i+1, if § =i
si(4) := i, if j=i+1;
j, otherwise.
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so 1 s defined by
_ 1 if j=1;
so(f) := { .

j, otherwise.

Note that , unlike the case of Coxeter groups , here the set of genera -
tors i s not symmetric . Note also that G, = C115, 1 s the symmetric
group S, while Gy, = 218, is the group of s igned permutations , also
known as the hyperoctahedral group, or the classical Weyl group
of
type B .

Returning now to the view of G, , as a semidirect product : 2" x 3,
we note that it would be worthwhile to  consider Z? in another
way : Given any order on  the alphabet ¥, Zr can
be identified with the subgroup T of G, , consisting of the ordered
permutations ,i. e.  those satisfying : i< j = =(i) < n(j) with respect
to the given order . ( This is done by sending a vector z = (21, ..., 2,) € Z
to the unique ordered permutation = € G,, satisfying z(r) = 2.
For example, given the
order 3 < 2 < 1 < 1 < 2 < 3onthe set {1,2,3,123}, the
vector B
(0,1,1) e Z3 corresponds to the  colored permutation  (3'1) ¢
Ga3). Note that i f we denote by S the group, i somorphic to S,
generated by S =Sg,, —{so}, then Tisjust as et of coset representatives
of s.

( Indeed , any colored permutation = € G,.,, can be written uniquely in the

following way : =« =o0-u where o1 s an ordered permutation and
u € S).
3. Basic STATISTICS ON  G,., For =€ G,,, we define the negative
set of 7hy:
Neg(m) = {i| z(m) # 0}. (1)

The s iz e of the set Neg(x) will be denoted by neg(n). The fo llowing
parameters we define on G, ,, depend on the assumption that we have some
order on the alphabet .
Let T € Gpn We say that the pair i < j is
an inversion of 7 if 7(i) > n(j). The number of inversions in =1is
denoted by inv ().

i€n—1]is a des cent of wif =(i)>n(i+1). We define :

Des(m):={1<i<n—1|n@)>7n(E+1)}

to be the des cent s et of = and we denote by des(r) the s ize of Des(r).
We also let

maj(mr) = Z i

and call it the major index of =.
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For example , consider the order 1 <2<3< 1 <2< 3defined
on
the set {1,2,3,123}. Also consider the colored permutation :

= ).

Then one has inv(n) = 2,des(r) =1 and maj(r) = 2.

Now , given any order on the alphabet ¥, we write 7 =o-u where o €T
and u € S(T and S were defined at the end of Section 2 . 2 ) . We
present a few s imple facts concerning this coset decomposition which will
be used later .

2
2

I =
=W

des(m) = des(u) (2)

neg(m) = neg(o) 3)

S a(m) =3 a(0) (1)
1=1 1=1

magj(m) = maj(u) (5)

Yo == Y e ]. (6)

4. A  LENGTH FUNCTION FOR G,,
In this section we present a formula for the length of G, ,, with respect
to Sg.,. A similar expression appearsin [13] . The proof of our

formula

depends on the length order we define next although the length function
it s elf i s independent of order .  We start with the definition of a length
function for G, :

Definition 4 . 1. For every =€ G, define the length of = with
respect

to the set of the generators Sg,, = {so,s1,...,sn—1} to be the minimal
number of generators satisfying that their product i s 7. Formally :

lrm)=min{r e N:w=s,; - s, forsomeiy, ..., i, € [0,n —1]}.

Definition 4 . 2. The length order on the alphabet

S={1,.,n,1..,7.., 1070 pl-l)
is defined as follows :

r—1]

e i<t clct< o<,

Theorem 4 . 3. For every neG,,:
Um) =ino(m) + Y (| 7(0) | +z(x) - 1)
zi(w) £ 0

where inv(r) is calculated with respect to the length order defined above
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L(m) = inv(m) + Y (| «(i) | +zi(r) = 1).

zi(m) #0
We prove first that ¢(z) < L(x) by presenting an algorithm which
expresses 7 as a product of L(rx) generators . For = e G,, write m=ou

where o € T,u €S. Our algorithm sends the identity permutation first to
o and then from o to ou==. Thisis done by multiplying on the r ight
by Coxeter generators .
Start with the identity permutation .
e Forevery j= |n(i)| such that i€ Neg(n), in increasing order

ofj :

— Move j to place 1 by multiplying on the r ight by the j—1
successive decreasing generators :  s;_i,..,s1. — BEquip j with z;(x) bars
, to get =«(i). This will be done by

multiplying on the r ight by '™ and thus will cost exactly

z; (m)steps.

After doing this process once for every ¢ colored digit * we get o€ T, i .
e .,o is increasing according to the length order . e Mix the permutation

o in order to get wout ofit.  This will
costinv(m)steps.
Example : 7 =3%1 Here o = 3*4, and u = 1243. The process is (

5
Multiplication i s always on the r ight ) :

123450—123451—213450—21345, 231451 —3%1459—321450—3%14 = 0.

Now , we are left with an increasing ordered permutation which we
have to mix .  This will be done by inv(x) elements of the generating
set S =S¢ —{so} which form « andthus we have
m = ou. n

n

n

summary , we used inv(r)+ >, (| 7(i)|—1)+ >z steps.  This proves
Zi(m)#£0 i=1
O(m) < L(m).
We prove now the other direction . For r=2,7,15, 1s the Coxeter
group of type B. In this case it is known that L(x) =¢(x) (See for
example[3]).

Take r>2andlet 7= ((z1,..,20),7) € G,n. We construct o’ =



((#1,.-s 21,), 7) € G, pbydefining :
’ 0 Zi = 0,

A
! 1 2z >0.

For example , if 7 =431 € G34 then 7/ =457 € Ga .
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n n

Denoting k=32 — 3 2/ we have , by the construction of ', that

1=1 i=1

L(m) = L(n")+k. Now , assume to the contrary that L(z) > ¢(r). We have
{m) > U')+k. (Indeed, take any reduced word representing = and
delete from it the k occurrences of the generator sy, which are responsible
for coloring the digits in = that are reducing colors in the passage to =’
This will give us a word representing =’).

We have now :

L(r")+ k= L(m) > l(r) > Ux") + k

which contradicts the fact that L(z’) = ¢(7') in G2,. O We proceed to the
calculation of the generating function of the length

function .
Theorem 4 . 4 .

n
> d" @ =l A+ = 1y).
Te€Gr, 1=1

Proof . It = € @G,, then using the coset decomposition we can
write

m =0 -uwhere o€ T,u €S. As can be easily deduced by the proof of
Theorem 4 . 3, the length function can also be written as :

() =inv(u) + £(0)
where (o) = Y (|o(i)| -1+ z(0))is the length function of o.
zi(0) #0
Now , it i s well known that 3 ¢"™*® =[n],!. Thus,

uES

Z qlf(ﬂ) — Zqinv(U) . qu(ﬂ) = [n],A,,

T€Gry ueS oc€T
where by induction

An _ (1 4 qn—l—i-l 4 q'rL—1+2 4 +q”_1+r—1)An71.

We have in summary :

n

Z g™ = [n]q!H(l +q'lr - 1]q).

Te€Gr, 1=1
]
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o . THE PARAMETER Imaj
In this section we introduce the first generalization of the parameter
maj defined for the symmetric groups and prove it s equi - distribution
with the length function of G,,. We introduce also the parameter Ides
which i s a generalization of the parameter des defined for the symmetric
groups .  We start with the following definitions :

Definition 5. 1. For every = € G,,, we define :
n
ldes(m) = des(m) + Z zi(m)
1=1
and
n
Imaj(r) = maj(m) + > (7@ |1+ z(r)
Zi(m) #£0 i=1
where the descents are computed with respect to the length order .
Theorem 5. 2. The parameter Imaj equi distributes with the
length
function over G,,, 1.e€.,
Z qﬁ(ﬂ') — Z qlm,aj(ﬂ).
m€ Gy, wEGH,
Proof . We use the semidirect decomposition of G, , and the equations

(3), (4), (5)and(6)toget:

S = 3T e (| ouli) | -1+ z(ow)

€ Gry ou€Gr,

= gy e (| (i) | -1+ ()

ueS oceT
= 3 S oA o) | 1+ ()
ueS oeT
= Y g,
m € Grn
O
5. 1. Euler - Mahonian Type Distribution . In this

section we pre - sent an Euler - Mahonian type bi - distribution for the
parameters Imaj and Ides over G,,.
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Theorem 5. 3.

Z tldes(‘n')qlmaj(ﬂ')

medG
oo =) [k+1)7t*
(t@)n + 1(1 + g¥t[r — 1ge) ,;0[ 1l
Proof . We use the semidirect decomposition of G, , and the equations

(2), (3), (4), (5)and(6)toget:

ST gHesgined(n) = S gdestmt P (ryme (M P L0(| (i) | <14 2:(m)
TE€Grn TG,

_ Zztdes u)-‘er 1, )maj( )+Zip(0)#0(‘ o(i) | =14 z(0))

ceTu €S
Zptz 1 (a) # O(| 0,( | 1 +Z1 thes(u maj u)
ceT ues
By [ 1, Theorem 2. 2], we have :
n
S st = TT(1— tq) Y[k + 1151, ”)

uesS i=0 k>0

so we are left with the sum :

Y P z(0)E o) # 0 o (i) | =1+ 2i(0)).
ceT
By the same t echnique we adopted in the proof of Theorem 4 . 4 we
can prove that
D PETz(0)l 6) 2 0(l o) | =1+ 2(0) = n] [(1 + g'tlr — 1]q0).
ceT i=1

Combining this with equation ( 7 ) we get :

Z tldes(ﬂ)qlmaj(ﬂ) —
s Gr,n
n n
[T+ d*tr — 1,0 TT( = ta') S 1k + 1124,
k=1 i=0 k>0
and thus



Z tldes(ﬂ')qlmaj(rr)

= [k+1]rt".
k>0

T € Zip LSy
H?:o(l - tqi)HZ:1(1 + qFtr — l]qt)

O
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6 . THE PARAMETER nmaj
In this section we define another parameter on Z,:S,. This
parameter
is a generalization of the parameter nmaj defined in [ 2] . The results
of this section do not depend depend on the order one chooses on the

alphabet® = {1,...,n,1 ...,n ..., 1= n[T*”}.

Definition 6 . 1. For = e€7,15, define the multiset :

NNeg(n) = {i*(™}.

Note that each i with z;(7) >0 appears z;(r) t imes . Definition 6 . 2
For = € G,,, define the multiset :

NDes(r) = Des(n) & NNeg(n™').

We define also ndes(m) =| NDes(r) | . Definition 6 . 3 . For =€ G,
define
nmaj(r) = Z i,
i € NDes(m)
and also

ndes(m) =| NDes(n) | .

Example 6.4. Consider the order
1 < 2 < 3 < 1 < 2 < 3 and take
T o= 3 HereDes(t) = {1}, = ' = 23" NNeg(=') = {1,3,3},

-
NDes(m) ={1,1,3,3},nmaj(r) =1+ 1+ 3 + 3 = 8andndes(n) = 4.

We define also some refinements of the parameters ndes and nmaj.
They will be used in the proof of the main result of this section . Defi-
nition 6 . 5. For every =€ G,,, define
di(m) :=|{j € Des(m):5>i}| (1<i<n).
This i s the number of descents in = from position i on . Define also for
every m e Gy,
ni(m) =| {j € NNeg(m):j > i}|.

Note that n;(r) counts the number of colors from position i on . Obser-
vation 6 . 6 . Let neG,, Then

ndes(r) = di () + ni (7 1),
nmaj(m) = Z[dz(ﬂ-) +n(r 1))
i=1
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6. 1. Euler - Mahonian Distribution . In what follows we
present an Euler - Mahonian type distribution of the parameters ndes and
nmaj de - fined earlier . We use here the Hilbert series of the algebra
Clql,...,qn] with respect to  multi - degree rearranged into  a weakly
decreasing se - quence ,i. e ., a partition.  The right - hand s ide in
the following result i s the Hilbert series of the above algebra .
Theorem 6 . 7 .

n

= di () +n; (w1

Z ( n ) 1_11:(])\‘ _ ZWEG,., nHi:l 4; (mynt )

(eM)<n m()\) n ' nH(l - q71" o q:)

1=1

inCllg1, ..., gqn]].
Proof . Recall from Section 3 the definition of T C G,, as the
set  of ordered permutations . As already shown in Section 3,7 can

be s een as
a copy of Zr and thus the fact that G,, = Z" x S, implies that every
7 € G, can be uniquely written as = ou where o € T and u € S, where
S is the subgroup of G, , generated by Sg,, — {so}.
It is clear from the definitions that d; (ou) = d;(u) and n;(u"to™1) =
ni(c~ ) for all o€ T,ue S, and 1<i<n. Therefore

n n

Z H qd1 (m)+ni(w~1) Z Z H qd i(ou)+n;((ou)™1)
T€Gi=1 ueSoceTi=1

n

ZZqu i(uw)+n; (o™
u€eSoceTi=1

n n
Zqu(u) ) Zqu(o’l)
ueESi=1 occ€Ti=1

In [2, Theorem 6 . 2], it is proven that the Hilbert series with respect
to multi - degree of C[ql,...,qn] can be written as a product of the gen -
erating  function  of the descent basis for type A and

the  generating function of the symmetric functions .  Explicitly :
n
i= d;(m
Z n 1_[1 Ai ZweSn Hz 194; ™ (8)
IOV N | (R TR
(eX)<n n

1=1
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in C[[gl,...,qn]], where the sum on the left - hand s ide is taken over all
partitions with at most n parts .

Thus , in order to complete the proof we have to prove that :

Define a function ¢:{0,...,r —1} — {0,..,r — 1} by
0 i=0
d)(z)_{ r—i i#0

Note that there i s a bij ection between the elements o € T and the
multisets of the form {1/1,...,n/»} where 0 < ji <r—1, given by

o+ NNeg(o™) = {| o(i) [?E))],

( Indeed , given any multiset A = {171,...,n7"}, define r by 7(i) =iy, for
every | < i < n and then order rto get o For example ,
given A ={1,1,2,2,3}, we form r =1234 and then o = 3%'4 )

Now , in order to calculate the sum 3> n[q"" | we can run
over
ceTli=1

the multisets of the form  {191,...,n%"} where 0 <ji < r-—1. Here,
every i, inserted to such a multiset ji t imes , contributes the monomial

(q1---qi)’" to our sum .  This gives us :
n
e ot
> ILa
ceTi=1
=(+ql+-+¢ 1 +qlq2+ (¢1g2)* + (q1q2) 1)
n
H(lfql -q})
=1
= n .
[T -at- )
1=1
|

This leads us to the following generalization of the Carlitz identity



for the parameters ndes and nmaj.
Theorem 6 . 8 .

Z nqnmaj(fr)tndes(ﬂ') _
€xGr
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to get :

ZE . nqnmaj(ﬂ') tndes(w)

> ( M\ )Pg”ki'tkl W0 = trgir)

(eA)<n

1=1
Dividing by (1 —t) we have :

Z o qnmaj(ﬂ)tndes(ﬂ') k=0
ErGron

1 =TI — trgir) DY < mr(L)\) >Pgil)‘itk,

oo (A)
Qi<<y

and thus the coefficient of ¢*1 s

—0

S () PN = e SR = () = el
k

(eX)<n In)€

and we have proved :

Z qnmaj(ﬂ)tndes(ﬂ) _ (1 _ t) H(l _ trqir) Z[k + 1]:11tk
T€Grm i=1 k>0

= et Stk 1t
k>0

O

Appendix A.  THE DISTRIBUTION OF nmaj
After the completion of this work we were told about the preprint of J

. Haglund , N . Loehr and J . B. Remmel [ 8 ] : 7 Statistics on wreath
prod - ucts , perfect matchings and s igned words ’ . A variant of
the parameter defined here as nmaj appears also in their work . Its

distribution over

n

G,n, 1s proven there to be [][ri],, We enclose here another proof of
=1
this distribution , based on the proof of Theorem 6 . 8 of the last section

Theorem Appendix A . 1.

n

S g™ =il

reGy, i=1
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n n

Z nma](ﬂ) Z P d (W)JFPTH(TF_I)

m€Gr, mEGH,

n n
Z . u) Z qunl(o’
ueS oeT
By substituting ¢= ¢l =--- = ¢n in equation 8 we get :
Zqu ldz = Hilb(Clz1, ..., Zn], q) nH(l -
ueS =1
but on the other hand
1
Hilb(Clz1, ..., zp],q) = i—qr
so we have
v i=1 1
PRI | CETOR ;
= " (=g
n

We turn now to the calculation of 3 Pi,™"

ceT
Substituting ¢ =¢l =--- = g¢n in equation 9 we get :
n
qu lnZ 0_—1 — Hi:l(l _q”)
= n][(1—q¢")
1=1
We have now :
n
=1 =1
: : 1 Il —g”
nqnmaj(ﬂ') _ 1— qz . . i= 1 T‘Z
2 [0 -1 = R gy - e
=1
(]
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